ՀԱՐՍՏԱՑՐՈՒ ԳԻՏԵԼԻՔՆԵՐԻԴ ՊԱՇԱՐԸ
Ակտիվացրու «Իմ+»-ը գերազանց գնահատականներ ստանալու համար
Ստեղծեք Ձեր ուսումնական ծրագիրը «ԻմԴպրոց» կայքում
Ստացեք հաշվետվություն Ձեր ուսումնական ծրագիր արդյունավետության
վերաբերյալ
Օգտագործեք Ձեր առաջադրանքները ստուգողական աշխատանքներում
Տեսություն
Կանոնավոր բազմանկյուններ
Կանոնավոր կոչվում են այն բազմանկյունները, որի բոլոր կողմերն ու բոլոր անկյունները հավասար են:
Ներքևի նկարում բերված են կանոնավոր բազմանկյունների օրինակներ՝ հավասարակողմ եռանկյուն, քառակուսի, կանոնավոր հնգանկյուն և վեցանկյուն:

Եթե կամայական կանոնավոր \(n\)-անկյան միևնույն գագաթից տանել անկյունագծեր, ապա բազմանկյունը կբաժանվի \(n-2\) եռանկյունների: Ուստի, կանոնավոր բազմանկյան ներքին անկյունների գումարը հավասար է

Քանի որ կանոնավոր \(n\)-անկյան բոլոր ներքին անկյունները հավասար են, ապա մեկ անկյան մեծությունը կլինի՝
Ցանկացած կանոնավոր բազմանկյանը կարելի է ներգծել և արտագծել շրջանագծեր: Ընդ որում, այդ շրջանագծերի կենտրոնները համընկնում են:
Ներգծյալ շրջանագիծը շոշափում է բազմանկյան բոլոր կողմերը, իսկ արտագծյալ շրջանագիծը անցնում է բոլոր գագաթներով:

\(AOK\) եռանկյան մեջ գոյություն ունեն կապեր \(a\) կողմի (\(AK\) հատվածը), արտագծյալ շրջանագծի շառավիղի՝ \(OA = R\) և ներգծյալ շրջանագծի շառավղի՝ \(OK = r\) միջև:
Քանի որ \(n\)-անկյունը բաղկացած է \(n\) հատ եռանկյուններից, որոնցից յուրաքանչյուրը հավասար է \(AOH\) եռանկյանը, ապա՝
Աղբյուրները
Լ.Ս. Աթանասյան, Վ.Ֆ. Բուտուզով, Ս.Բ. Կադոմցև, Է.Հ. Պոզնյակ, Ի.Ի..Յուդինա: Երկրաչափություն 9-րդ դասարան, Երևան, «Զանգակ», 2013