ՀԱՐՍՏԱՑՐՈՒ ԳԻՏԵԼԻՔՆԵՐԻԴ ՊԱՇԱՐԸ
Ակտիվացրու «Իմ+»-ը գերազանց գնահատականներ ստանալու համար
Ստեղծեք Ձեր ուսումնական ծրագիրը «ԻմԴպրոց» կայքում
Ստացեք հաշվետվություն Ձեր ուսումնական ծրագիր արդյունավետության վերաբերյալ
Օգտագործեք Ձեր առաջադրանքները ստուգողական աշխատանքներում

Տեսություն

Կանոնավոր բազմանկյուններ
Կանոնավոր կոչվում են այն ուռուցիկ բազմանկյունները, որոնց բոլոր կողմերը և անկյունները հավասար են:
Նկարում բերված են կանոնավոր բազմանկյունների օրինակներ՝ եռանկյուն (հավասարակողմ), քառանկյուն (քառակուսի), հնգանկյուն, վեցանկյուն:
 
Regnst.png
 
Եթե կանոնավոր բազմանկյան մեջ տանենք անկյունագծեր, ապա կստացվեն կանոնավոր ոչ ուռուցիկ բազմանկյուններ:
 
Regnst_d.png
 
Եթե անկյունագծերը տանենք նույն գագաթից, ապա կանոնավոր \(n\)-անկյունը կբաժանվի \(n-2\) եռանկյունների:
 
Ուշադրություն
Կանոնավոր \(n\)-անկյան ներքին անկյունների գումարը 180°n2 է:
R_dz1.png
Քանի որ, կանոնավոր \(n\)-անկյան բոլոր անկյունները հավասար են, ապա դրանցից մեկի աստիճանային չափը կլինի` 180°n2n
Կանոնավոր բազմանկյան ներգծյալ և արտագծյալ շրջանագծերը
Ցանկացած կանոնավոր բազմանկյանը կարելի է ներգծել և արտագծել շրջանագծեր: Երկու շրջանագծերի կենտրոնները համընկնում են և կոչվում են կանոնավոր բազմանկյան կենտրոն:
Ներգծյալ շրջանագիծը շոշափում է բազմանկյան բոլոր կողմերը նրանց միջնակետերում, արտագծյալ շրջանագիծը անցնում է բազմանկյան բոլոր գագաթներով:
 
Rl.png
 
AOH=360°n;AOK=360°2n=180°n
 
Հավասարակողմ եռանկյան (կանոնավոր եռանկյուն) և քառակուսու (կանոնավոր քառանկյուն) համար մեր դիտարկած բանաձևերը մնում են ուժի մեջ:
Աղբյուրները
Լ.Ս. Աթանասյան, Վ.Ֆ. Բուտուզով, Ս.Բ. Կադոմցև Է.Գ. Պոզնյակ, Ի.Ի..Յուդինա: Երկրաչափություն 8-րդ դասարան, Երևան, "Զանգակ 97", 2007: