ՀԱՐՍՏԱՑՐՈՒ ԳԻՏԵԼԻՔՆԵՐԻԴ ՊԱՇԱՐԸ
Ակտիվացրու «Իմ+»-ը գերազանց գնահատականներ ստանալու համար
Ստեղծեք Ձեր ուսումնական ծրագիրը «ԻմԴպրոց» կայքում
Ստացեք հաշվետվություն Ձեր ուսումնական ծրագիր արդյունավետության վերաբերյալ
Օգտագործեք Ձեր առաջադրանքները ստուգողական աշխատանքներում

Տեսություն

Իռացիոնալ թվեր

Մենք գիտենք, որ ցանկացած ռացիոնալ թիվ ներկայացվում է անվերջ պարբերական տասնորդական կոտորակների տեսքով՝

4=4,000...=4,(0)54=1,25=1,25000...=1,25(0)722=0,3181818...=0,3(18)7,3777=7,37770000...=7,3777(0)

Սակայն, կան անվերջ տասնորդական կոտորակներ, որոնք պարբերական չեն:

Օրինակ

\(0,10110111...\) (յուրաքանչյուր \(0\)-ից հետո \(1\)-երի թիվը մեկով ավելանում է),

\(-\)\(17,1234567891011121314\)\(...\) (ստորակետից հետո գրված են բոլոր բնական թվերը):

Կան նաև երկրաչափությունից հայտնի անվերջ ոչ պարբերական տասնորդական կոտորակներ:

Եթե ցանկացած շրջանագծի երկարությունը բաժանել նրա տրամագծի վրա, ապա քանորդում ստացվում է իռացիոնալ թիվ: Այդ թիվը հանրահայտ π=3,1415926535897932... թիվն է (π-ն հունարեն այբուբենի տառ է, կարդացվում է «պի»):

π թվի իռացիոնալությունը ապացուցվել է գերմանացի մաթեմատիկոս Ի.Լամբերտի կողմից \(1766\) թվականին:  

Թիվը, որը կարելի է գրել անվերջ ոչ պարբերական կոտորակի տեսքով կոչվում է իռացիոնալ թիվ:
Իրական թվեր

Եթե ռացիոնալ թվերի բազմությանը ավելացնել իռացիոնալ թվերը, ապա միասին դրանք տալիս են իրական թվերի բազմությունը:

Ռացիոնալ և իռացիոնալ թվերը միասին անվանում են իրական թվեր: Իրական թվերի բազմությունը նշանակում են  տառով:

Այսպիսով, կան երկու տեսակի իրական թվեր՝

  • ռացիոնալ թվեր,
  • իռացիոնալ թվեր:
Թվերը ներկայացնելով տասնորդական կոտորակների տեսքով, գալիս ենք հետևյալ եզրակացությանը: Իրական թվերը բաղկացած են տասնորդական կոտորակներից՝
  • վերջավոր և անվերջ պարբերական տասնորդական կոտորակներից (ռացիոնալ թվեր),
  • անվերջ ոչ պարբերական տասնորդական կոտորակներից (իռացիոնալ թվեր):

Այսպիսով, իրական թվերի բազմությունը վերջավոր, անվերջ պարբերական և անվերջ ոչ պարբերական տասնորդական կոտորակների բազմությունն է:

Աղբյուրները
Ս. Մ. Նիկոլսկի, Մ.Կ. Պոտապով, Ն.Ն. Րեշետնիկով, Ա.Վ. Շեվկին, Հանրահաշիվ, 8-րդ դասարան, Անտարես, 2012: