ՀԱՐՍՏԱՑՐՈՒ ԳԻՏԵԼԻՔՆԵՐԻԴ ՊԱՇԱՐԸ
Ակտիվացրու «Իմ+»-ը գերազանց գնահատականներ ստանալու համար
Ստեղծեք Ձեր ուսումնական ծրագիրը «ԻմԴպրոց» կայքում
Ստացեք հաշվետվություն Ձեր ուսումնական ծրագիր արդյունավետության վերաբերյալ
Օգտագործեք Ձեր առաջադրանքները ստուգողական աշխատանքներում

Տեսություն

Հավասարումների համարժեք ձևափոխություններ
Դու արդեն կուտակել ես տարբեր հավասարումների լուծման որոշակի փորձ: Դու գիտես, որ հավասարումները լուծելիս հաճախ պետք է լինում կատարել տարբեր ձևափոխություններ, օրինակ՝
  • հավասարման հակադիր նշաններով անդամները մի մասից տեղափոխվում են մյուս մասը,
  • կատարվում է հավասարման նման անդամների միացում,
  • հավասարման երկու մասերը բազմապատկվում են կամ բաժանվում միևնույն զրոյից տարբեր թվով,
  • ազատվում են հավասարման մեջ մասնակցող կոտորակի հայտարարից,
  • հավասարման երկու մասերը քառակուսի են բարձրացնում:
Դա արվում է, որպեսզի տրված հավասարումը փոխարինվի ավելի պարզ հավասարումով:
 
Դու գիտես, որ որոշ ձևափոխությունների արդյունքում առաջանում են ավելորդ արմատներ: Օրինակ, երբեմն այդպես է պատահում իռացիոնալ հավասարումը քառակուսի բարձրացնելիս:
 
Հիշենք իռացիոնալ հավասարումների լուծման քայլերը:
Իռացիոնալ հավասարումը լուծելու համար պետք է՝
 
1) այն բարձրացնել քառակուսի,
2) լուծել ստացված հավասարումը,
3) կատարել ստուգում՝  հայտնաբերելու համար ավելորդ արմատները,
4) գրել վերջնական պատասխանը:
Պետք է շատ զգույշ լինել և թույլ չտալ, որ առաջանան ավելորդ արմատներ: Երրորդ քայլը արվում է ավելորդ արմատներ հայտնաբերելու և դրանցից ազատվելու համար:
 
Ուշադրություն
Այսպիսով, պետք է ուշադիր լինել, որ ձևափոխության արդյունքում ստացվի համարժեք հավասարում, այսինքն ձևափոխությունը լինի համարժեք:
Իսկ որո՞նք են համարժեք հավասարումները:
Երկու հավասարում կոչվում են համարժեք, եթե նրանք ունեն միևնույն արմատները (կամ երկուսն էլ արմատ չունեն):
 
Եթե ձևափոխության արդյունքում մի հավասարումից առաջանում է նրան համարժեք հավասարում, ապա այդ ձևափոխությունը անվանում են համարժեք ձևափոխություն:
Համարժեքեն հետևյալ ձևափոխությունները: 
 
1. Հավասարման անդամի հակադիր նշանով տեղափոխումը հավասարման մի մասից՝ մյուսը: Օրինակ՝ \(2x + 5 = 7x - 8\) հավասարումից անցումը \(2x - 7x = - 8 - 5\) հավասարմանը համարժեք ձևափոխություն է: Դա նշանակում է, որ \(2x + 5 = 7x -8\) և \(2x - 7x = -8 - 5\) հավասարումները համարժեք են:
 
2. Հավասարման երկու մասերը նույն զրոյից տարբեր թվով բազմապատկելը կամ բաժանելը:
 
Օրինակ՝ 0,5x20,3x=2 հավասարումից անցումը 5x23x=20 հավասարմանը, (երկու մասերը բազմապատկվել են \(10\) -ով), համարժեք ձևափոխություն է:
 
Համարժեք չեն հետևյալ ձևափոխությունները:
 
1. Փոփոխական պարունակող հայտարարներից ազատվելը:

Օրինակ՝ x2x2=4x2 հավասարումից անցումը x2=4 հավասարմանը՝  համարժեք ձևափոխություն չէ: Բանն այն է, որ x2=4 հավասարումն ունի երկու արմատ՝ \(2\) և \(- 2\), սակայն \(x = 2\) արժեքը չի պատկանում առաջին հավասարման ԹԱԲ-ին (հայտարարում ստացվում է զրո): Այս դեպքում \(x = 2\) -ը ավելորդ արմատ է:  
 
2. Հավասարման երկու մասերը քառակուսի բարձրացնելը:
 
Մենք արդեն տեսել ենք, որ այս դեպքում ևս կարող են առաջանալ ավելորդ արմատներ:
 
Ուշադրություն
Եթե հավասարման լուծման ընթացքում կիրառել ես այս երկու ոչ համարժեք ձևափոխություններից որևէ մեկը, ապա տեղադրիր գտնված արմատները սկզբնական հավասարման մեջ՝ համոզվելու համար, որ ավելորդ արմատներ չեն առաջացել:
Աղբյուրները
Ս. Մ. Նիկոլսկի, Մ.Կ. Պոտապով, Ն.Ն. Րեշետնիկով, Ա.Վ. Շևկին, Հանրահաշիվ, 8-րդ դասարան, Անտարես, 2012: