ՀԱՐՍՏԱՑՐՈՒ ԳԻՏԵԼԻՔՆԵՐԻԴ ՊԱՇԱՐԸ
Ակտիվացրու «Իմ+»-ը գերազանց գնահատականներ ստանալու համար
Ստեղծեք Ձեր ուսումնական ծրագիրը «ԻմԴպրոց» կայքում
Ստացեք հաշվետվություն Ձեր ուսումնական ծրագիր արդյունավետության վերաբերյալ
Օգտագործեք Ձեր առաջադրանքները ստուգողական աշխատանքներում

Տեսություն

Իրական թվի մոտավոր հաշվումը
Որոշ դեպքերում, մասնավորապես, գրաֆիկական եղանակով հավասարումներ լուծելու համար, մաթեմատիկոսները որոշեցին մտցնել արժեքի մոտավոր հաշվման գաղափարը:

 

Մոտավոր հաշվարկի կամար կա ևս մեկ պատճառ՝ դա իրական թվերն են, այսինքն՝ անվերջ տասնորդական կոտորակները: Չէ՞ որ կատարել հաշվարկներ անվերջ տասնորդական կոտորակների հետ անհարմար է, այդ պատճառով, գործնականում հաշվարկները կատարում են իրական թվերի մոտավոր արժեքների հետ:  

Երկրաչափական շատ բանաձևերում հանդիպում է π իրական թիվը: Դա անվերջ ոչ պարբերական տասնորդական կոտորակ է:

Օրինակ

Հաշվենք π\(=3,141592...\) թվի մոտավոր արժեքները:

1) Եթե այս անվերջ կոտորակի գրառումն ընդհատենք, ստորակետից հետո պահելով երկու թվանշան, ապա կստանանք՝ π\(3,14\):

Սա π թվի մոտարկումն է հարյուրերորդականի ճշտությամբ (մինչև \(0,01\) ճշտությամբ) պակասորդով (ներքևից):

2) Ստորակետից հետո կարելի է պահել երեք թվանշան: Ստանում ենք՝ π\(3,141\):

Սա π թվի մոտարկումն է մինչև \(0,01\) ճշտությամբ պակասորդով (ներքևից):

3) Եթե պահել երեք թվանշան և երրորդը մեկով ավելացնել՝ π\(3,142\), ապա կստանանք π թվի մոտարկումը մինչև \(0,01\) ճշտությամբ ավելուրդով (վերևից):

Պակասորդով և հավելուրդով մոտարկումները անվանում են թվի կլորացում:

Կլորացման ճշտությունը որոշվում է թվի \(x\) ճշգրիտ արժեքի և նրա \(a\) մոտավոր արժեքի տարբերության մոդուլով՝ xa

Թիվը կլորացնելիս պետք է վարվել այսպես: 
Կլորացման կանոնը:
Եթե առաջին դեն նետվող թիվը \(5\)-ից փոքր է, ապա այն կարելի է ուղղակի անտեսել՝ կատարել մոտարկում պակասորդով, իսկ եթե դեն նետվող թիվը \(5\)-ց մեծ է կամ հավասար, ապա պետք է կլորացնել հավելուրդով:
Ուշադրություն
Պետք է հիշել, որ պակասորդով կլորացնելիս միշտ ստանում ենք ճշգրիտից փոքր թիվ, իսկ հավելուրդով` մեծ:
Վերադարնանք π\(=3,141592...\) թվին: Կլորացնելով \(0,001\) ճշտությամբ ստանում ենք՝ π\(3,142\): Այստեղ առաջին դեն նետվող թիվը հավասար է \(5\) -ի (ստորակերից հետո չորրորդ թիվը), ուստի կլորացրեցինք հավելուրդով: 
Օրինակ

Կլորացնելով \(0,0001\) ճշտությամբ ստանում ենք՝ π\(3,1416\): Առաջին դեն նետվող թիվը (հինգերորդը ստորակետից հետո) հավասար է \(9\) -ի:

Արդեն տեսանք, որ \(0,01\) ճշտությամբ պետք է կլորացնել պակասորդով՝ π\(3,14\):

Աղբյուրները
Ս. Մ. Նիկոլսկի, Մ.Կ. Պոտապով, Ն.Ն. Րեշետնիկով, Ա.Վ. Շեվկին, Հանրահաշիվ, 8-րդ դասարան, Անտարես, 2012: